
 MDL Software Test Guidelines
02/06/04

DRAFT

i

MDL SOFTWARE TESTING GUIDELINES

1.0 INTRODUCTION

This Meteorological Development Laboratory’s (MDL) Test Guidelines (TG)
describes objectives, strategy, validation techniques, and documentation
standards used for testing the MDL software applications. The purpose of this
document is to provide a standard approach for testing all MDL applications.
The goal is to provide an effective, repeatable, software test process which
is independent of the software language, design methodology, and development
environment. The scope of the testing described in this document is to
identify and remove all defects and also to validate that all software
applications meet all requirements allocated to them while being implemented
in a correct and efficient manner. This document is organized as follows:

Section 2.0 - defines the objectives of testing and defines test
verification methods

Section 3.0 defines the test planning activity

Section 4.0 defines testing documentation such as test procedures, and
test logs

2.0 OBJECTIVES AND TEST VALIDATION TECHNIQUES

The overall objective of testing is to verify compliance of the software with
it’s requirements. Software test activities are driven by the need to verify
that the software satisfies all of it’s requirements. Each software
requirement is verified by one or more of the following methods:

Inspection - A technique in which satisfaction of the requirement is
verified by inspection of hardware, source code and or other physical
means.

Test - A technique in which satisfaction of the requirement is verified
by exercising the software and recording and analyzing the results of
the test.

Demonstration - A technique in which satisfaction of the requirement is
verified by observing the performance of the software.

Analysis - A technique in which satisfaction of the requirement is
verified by inference based on examination and analysis of the internal
structure of the software and it’s components. This may be required
when a requirement cannot be directly tested and observed because of a
unique configuration not available on the test platforms.

Simulation - A technique in which satisfaction of the requirement is
verified by using a representation of a missing component (e.g., a
specifically developed component of code to represent a hardware
component.

 MDL Software Test Guidelines
02/06/04

DRAFT

1

3.0 TEST STRATEGY

The primary goal of MDL’s testing activities is to identify and remove defects
from individual application software, before allowing them to proceed to later
levels of system integration, and to ensure that all MDL software requirements
traceable to the applications are satisfied. Our test strategy has two basic
points of view. The first, termed functional, specifies testing from the
perspective of a functional specification without concern for the specific
implementation details. This type of testing takes on the user's point of
view at the application level. At the unit and module levels, functional
testing is only concerned with the functional interface and module behavior
from the perspective of a calling function outside of the entity to be tested.

The second testing point of view, termed structural, focuses on studying the
implementation details embodied in the source code to determine program
attributes and correctness. Structural testing can consider such programming
and implementation details as logic paths, language characteristics, and
compliance with programming standards. There are times when the structure of
the code helps determine the functional test that needs to be performed, and
the boundaries between functional and structural testing can become fuzzy.
Testing of each application is designed to include adequate coverage of both
the functional and structural aspects.

Testing MDL software applications is done in two steps--informal, then formal.
The dividing line between these two steps is simply the point at which the
application code is handed over to configuration management (CM) for incorpo-
ration into the baseline. Testing of code performed prior to submitting to CM
is considered informal because testing activities and code development can be
performed without any formal actions outside of the development team. Once
code is under CM control, testing is considered formal because all activities
involving the base-lined code, such as testing and changing the code, must be
formally documented (defect reports, change documents) and controlled by CM.

The testing process follows a bottom-up approach, although some aspects of
top-down testing are also incorporated by using high level drivers which
eventually evolve into modules.

Testing begins at the lowest unit level and proceeds upward as units are
integrated to form modules. At the unit/module level, testing is required for
all modules and is performed in the developers own workspace. Once the
unit/module level development and testing is complete, software integrated
testing begins at the application level to test the integrated functionality
of the modules. Software integration testing takes place in the development
testing environment. Once the software integration testing is completed the
application is loaded onto the operational testing environment to test
compatibly with other current applications.

Appendix 1 defines the various techniques that should be considered for each
of the testing levels being applied to verify the MDL application software.

3.1 TEST PROCESS

The testing process follows a bottom-up approach, although some aspects of
top-down testing are also incorporated by using high level drivers which
eventually evolve into modules. Testing begins at the lowest unit level and
proceeds upward as units are integrated to form modules. At the unit/module
level, testing is required for all modules and is performed in the developers
own workspace. Once the Unit/Module Testing is complete, Software Integrated
Testing begins at the application level to test the integrated functionality
of the modules. Software Integration Testing (SwIT) takes place in the

 MDL Software Test Guidelines
02/06/04

DRAFT

2

development testing environment. Once the SwIT is completed and an Integra-
tion Readiness Review (IRR) is successfully completed, the application is
loaded onto an operational testing environment for System Integration Testing
(SIT) to test compatibly with other current applications. SIT testing is
formally ended upon completion of the Operational Readiness Review (ORR).

3.1 UNIT/MODULE TESTING

The purpose of unit/module testing is to provide early identification of
internal errors in such aspects of the software as functionality, program
structure, and performance. Units and modules are tested for:

• limit and range validation (boundary analysis),
• error handling validation,
• logic/path validation,
• local data structure validation,
• performance testing,
• application programming interface validation, and
• user interface style guide compliance.

This level of testing is performed soon after a unit is compiled successfully
or a module is built successfully and the appropriate code analysis utilities
(e.g., Purify and Lint) have been applied to the unit. A peer review or
complete code walk through is conducted by the developer with an appropriate
technical individual(s) prior to testing to ensure the code fulfills technical
and functional requirements and complies with MDL software standards.

Unit/Module testing is performed by the developer using a software debugger or
test drivers which exercise the units and modules. Unit/module testing is
performed within the developer's own workspace in the development environment.
Developers are responsible for identifying and documenting unit test proce-
dures to fully verify the software. Each test procedure, its test data (if
used), and its test results will be documented in the Software Documentation
Files (SDF) using the test procedure forms adopted by the project.

As a final step, the developer may perform validation testing on appropriate
modules. Validation testing involves comparing the output of the module with
that of an existing piece of software known to produce correct output. This
testing will be performed only when comparable data are available for the
module.

Unit testing is considered complete after all of the test procedures have been
successfully executed and the code walkthrough has been conducted. Appendix 2
provides some Unit Test Guidelines and Appendix 3 contains a Unit Test
Checklist.

3.2 SOFTWARE INTEGRATION TESTING

The purpose of software integration testing is to detect functional errors,
and demonstrate interface compatibility by testing the integrated application.
in an environment which simulates operational capabilities. This will involve
testing the integration of all software modules which comprise the applica-
tion. In addition, regression testing is conducted upon implementation of any
system/software changes. Regression testing is a subset a previously executed
tests, the level of which is proportional to the scope and impact of the
changes.

 MDL Software Test Guidelines
02/06/04

DRAFT

3

The software integration testing takes place after the application has been
unit tested and a code walkthrough has been conducted. To begin this phase of
the testing process, the developer(s) must identify functional test procedures
to validate the software requirements. These may be derived from the same
test procedures used for unit testing, but must address the integrated aspects
of the application. For each test procedure, the developer must write the
test descriptions, obtain test data, and schedule a review of the test
procedure. For large pieces of code involving new functionality, a Test
Readiness Review should be held to verify the completeness of the test
procedures before approving the software for software integrated testing.
For small enhancements or bug fixes it is sufficient for the Task Lead or
their appointee to review the test procedures before approving the associated
change document.

The SwIT is considered complete when all of the associated test procedures are
passed and all pending or failed test procedures are reassigned to a developer
for repair. Once testing is completed, an Integration Readiness Review (IRR)
is held to verify the completeness of the test procedures before approving the
software for System Integration Testing (SIT).

3.3 SYSTEM INTEGRATION TESTING

The purpose of system integration testing is to independently validate the
software requirements in an environment which simulates WFO operational
capabilities. System Testing consists of a collection of subtypes, including
load/stress, volume, performance, reliability/availability, fail-over,
configuration, compatibility, security, instability, and human factors. This
level of testing is performed after the software deliverables have been
baselined under CM control, successfully passed all software integrated
testing, and installed in the operational environment. To install the
application, the Release Coordinator will use the same installation media used
for the final software integrated test.

System Integration Testing is considered complete after all of the test
procedures have been successfully executed and all pending SPRs have been
reassigned to another release. An Operational Readiness Review is conducted
before the software becomes operational.

 MDL Software Test Guidelines
02/06/04

DRAFT

4

4.0 TEST DOCUMENTATION

MDL Test Documentation includes a test plan, test procedures, and test log.

4.1 TEST PLAN

The testing process includes the careful and detailed analysis of system
requirements and design, test bed constraints, and development tools that can
be used for test instrumentation. The key test planning activities are:

• Defining the overall testing strategy and required tools to
support it

• Designing tests, test case and test procedures to implement the
strategy

• Specifying the overall system acceptance test pass/fail criteria
• Developing a schedule and staffing to accomplish the testing.

This information should be developed and documented in the project’s software
Test Plan. A test plan should be prepared for testing each new release of
software. The Test Plan should identify:

• Focus
- Integration Points
- New Data Interfaces
- New Functionality

• Test Procedures for the following categories
- Functionality
- Integration
- Regression
- Fail over
- Stress
- Performance
- Reliability
- Ad-hoc

• Test environment
- Hardware and Commercial-Off-The-Shelf (COTS) software

• Test Tools (if any)
• Schedule and Staffing

4.2 TEST PROCEDURES

Regardless of the level or stage of testing, the basic structure of the
testing will be essentially the same. For a given unit, module, or applica-
tion, one or more test procedures will be identified to evaluate the func-
tional or structural condition of the code. Test procedures will be designed
based on specific functional requirements or components of code structure.

Each test procedure must include:

• a test description
• test type
• required support software (e.g., drivers, stubs, tools), inputs
• expected outputs
• compilation of the test results
• identify the software requirements validated by the test

Once the individual test procedures have been created, they will be kept under
a Unit/Module folder and a Master List of all the test procedures will be kept
in the SDF.

 MDL Software Test Guidelines
02/06/04

DRAFT

5

To determine the success or failure of a test, the tester will conduct any
necessary data reduction or analysis and compare the actual results with the
expected results. For each discrepancy, the tester will try to determine if
the problem is in the test, the software being tested, or the hardware. How
the problem is handled depends on whether or not the testing is being done
formally or informally. If the testing is informal, the problem will be fixed
immediately and testing will be continued. If the testing is formal, then the
problem will be formal documented and submitted to CM before changes can be
made to the software. Appendix 4 contains a template for a Test Procedure.

5.3 TEST LOG

A test log should be prepared for each project/task for each test cycle and
release. A test log contains a master list of test procedures, responsible
tester, when it was tested, pass/fail, comments and a summary of the test
cycle results. Appendix 5 contains a template for a test log. A test log
should be completed for each project/task.

 MDL Software Test Guidelines
02/06/04

DRAFT

A1-1

APPENDIX 1
TESTING TECHNIQUES

This section defines the various techniques that should be considered for each
of the testing levels being applied to verify the MDL applications software.
A summary of the affiliation between test levels and the test techniques is
provided in Table A1-1 and Table A1-2. Not all test techniques are relevant
to all types of software development projects. Software developers must be
familiar with the various techniques and apply the appropriate technique and
degree of testing as the project requirements dictate. It will be the respon-
sibility of the person or team defining the test cases to choose the appropri-
ate testing techniques employed at each level of testing.

Path Testing

Path testing is a highly structural test technique well-suited to
unit/module level testing. Path testing consists of exercising selected
executable paths in an effort to identify control structure errors.
However, it is virtually impossible to test all paths through a software
system or even all paths through a relatively simple unit. The solution
is to carefully choose a small set of paths that provide complete
coverage.

Criteria for path selection, at a minimum, requires that enough paths be
chosen in order to ensure that every decision/condition point is taken
in each possible direction at least once and that every line of code is
executed at least once (complete coverage). Ensuring that every deci-
sion/condition point is taken in each possible direction at least once
is equivalent to exercising all sub-elements from which all paths are
created, without exercising all paths. Anything less than complete
coverage results in untested code being integrated into the system.

Deriving the path-forcing input values is called sensitizing the path.
Sensitizing can be accomplished in either a forward or backward direc-
tion, by starting at the beginning or the end of the path, respectively.
In either case, the control structures are navigated by choosing the
broadest range of values allowed without violating the previous choices.
In this way, the entire path can be navigated using the set of sensi-
tized values.

Boundary Condition Testing

Boundary condition testing can be applied to both structural and
functional testing. It consists of identifying and using input values
that exercise the maximum, minimum, and just-beyond maximum and minimum
software tolerances. Both input and output tolerances should be
exercised; for example, input values that yield the minimum and maximum
value for the associated output parameter should be chosen, as well as
input values that are themselves minimums and maximums.

Pure path testing alone does not detect certain types of errors, such as
missing paths or incorrect logic. Therefore, to maximize error detec-
tion, path testing must be applied in combination with other techniques,
such as boundary condition testing. Additionally, an understanding of
what the path is intended to accomplish, including detailed expected
results, is necessary to uncover invalid logic within valid paths.

 MDL Software Test Guidelines
02/06/04

DRAFT

A1-2

Input Validation and Syntax Testing

Input validation and syntax testing is a common functional testing
technique used to test the point where a human-computer interface
interacts with the code. In order of importance, the priorities for
generating input validation and syntax testing cases are as follows:

• test for direct effects of invalid input,
 • test for indirect effects of invalid input, and
 • test acceptance of valid input.

Transaction Flow Testing

Transaction flow testing techniques are similar to path testing.
However, a transaction is a functional capability from the user's
perspective. Therefore, transaction flow testing is performed on a
functional level and is independent of implementation. Transaction flow
testing will comprise the majority of test cases within any post
integration testing activities.

Transaction flow path selection consists of analyzing the software
requirements to determine a set of fundamental transactions that the
software is required to perform. The design of these test cases should
be able to detect invalid paths through the application as well as test
valid transaction flows.

Equivalence Partitioning

Exhaustive input testing typically is not possible, particularly for
functional oriented testing. Instead, functional-type testing is
performed through a small subset of all possible inputs. Therefore, the
selection of the appropriate subset becomes a critical element of test
case design.

In identifying equivalence classes, both valid and invalid equivalence
classes should be specified, where invalid classes represent erroneous
input values and invalid states or results.

Equivalence partitioning, as a testing technique, should be combined
with other techniques to both improve the quality of tests implemented
and limit their number.

 MDL Software Test Guidelines
02/06/04

DRAFT

A1-3

Table A1-1. Testing Techniques Applied to Unit/Module Level Testing

Test Level Technique Purpose Characteristics

Unit/Module
Level Testing

Path Testing Execution of every logic
branch and line of code
finds logic errors in con-
trol structures, dead code,
errors at loop boundaries,
and errors in loop
initializations.

Perform McCabe’s cyclomatic
complexity analysis to help
determine number and focus of
unit and module test cases.
Perform path sensitization to
determine test case parame-
ters.

Choose parameter which com-
plement other techniques,
such as boundary conditions
and invalid syntax inputs.

Boundary condi-
tion testing

Interface testing finds
errors in input and output
parameter tolerances and
verifies the program limits
are correctly stated and
implemented.

Test tolerances such as pa-
rameter minimums, maximums,
and “just beyond” minimums
and maximums.

Choose input parameter that
test both input and output
tolerances.

Input validation
and syntax test-
ing

Verifies that the error
handling facilities of the
program operate as stated
and that these facilities
are sufficient for the er-
rors that occur.

Valid and invalid inputs
uncover errors in the user
interface module under
test.

Force every error message and
verify the accuracy and clar-
ity of each.

Choose valid and invalid in-
put parameters. Invalid pa-
rameters include wrong type,
scope, length and special
keyboard characters, ESC,
CNTL, etc.

 MDL Software Test Guidelines
02/06/04

DRAFT

A1-4

Table A1-2. Testing Techniques Applied to Software and System Integration -
Testing.

Test Level Technique Purpose Characteristics

Software and
System Inte-
gration Test-
ing

Boundary condi-
tions testing

Interface testing finds er-
rors in input ans output
parameter tolerances and
verifies that the program
limits are correctly stated
and implemented.

Test tolerances such as
parameter minimums, maxi-
mums, and “just beyond”
minimums and maximums.
Choose input parameters
that test both input and
output tolerances.

Input validation
and syntax testing

Verifies that the error han-
dling facilities of the pro-
gram operate as stated and
that these facilities are
sufficient for the errors
that occur.

Valid and invalid inputs
uncover errors in the user
interface module under test
and side effects that show
up in other related modules
being integrated.

Force every error message
and verify the accuracy
and clarity of each.

Choose valid and invalid
input parameters. Invalid
parameters include wrong
type, scope, length and
special keyboard charac-
ters, ESC, CNTL, etc.

Equivalence parti-
tioning

Reduce necessary number of
test cases for adequate cov-
erage.

Uncover functional errors in
the execution of integrated
modules.

Improve probability of
uncovering errors versus
random cases by partition-
ing test cases by class.

Choose representative set
of cases that cover all
classes.

Transaction flow
testing.

Uncover functional and per-
formance errors in the exe-
cution of integrated mod-
ules.

Verifies proper functional
capability against all soft-
ware requirements.

Similar steps as in path
testing but a functional
/performance level.

Test for valid and invalid
paths. Perform transaction
flow path selection using
software requirements from
the perspective of appli-
cation users.

 MDL Software Test Guidelines
02/06/04

DRAFT

A2-1

APPENDIX 2
UNIT TESTING GUIDELINES

The role of unit testing in the Post Build 5 process is a focus on the
implementation of the design and is an important complement to the System
Integration Test and functional Evaluation Test processes. These guidelines
and checklist are intended to provide guidance on the areas that will be
presumed to be unit tested upon entrance to the test phase following develop-
ment. It is not intended to replace the peer review process or the code
walkthrough, but rather serve as an additional tool to assist in improving the
quality of AWIPS software. Specific guidelines:

1. Unit tests should be conducted on all new or modified modules (i.e.,
function, subroutine or class). The extent of the testing should be
guided by the complexity of the module.

2. Unit tests should be planned and conducted to take into account design
assumptions, a full range of operational possibilities and special
cases, where appropriate.

3. A complete unit test is comprised of both positive and negative test
cases. Positive test cases should include all values and conditions
expected to be encountered. Negative test cases should include, to the
extent possible, nvalid and/or missing values and conditions.

4. A complete unit test will verify all input and output parameters conform
to design assumptions.

5. A complete unit test will execute each statement in the module, at least
 once.

6. At a minimum, test cases should be comprised of a subset of the test
factors included on the attached checklist. Any additional test
requirements imposed by individual development organizations should be
included, as well.

7. Tests of boundary condition values should be tested for minimum,
minimum -1, minimum +1, maximum, maximum -1 and maximum +1
values.

 MDL Software Test Guidelines
02/06/04

DRAFT

A3-1

APPENDIX 3
UNIT TEST CHECKLIST

Test Factor N/A Values
 Checked

Boundary Checks

Date Parameters

Occurrence Parameter

Value Parameter

Formula Parameter

Common Valid Representations

 Leading Zeros and not

 Leading Blanks and not

 Record Type combinations

 Left or Right Justification

 Existence of relationship(s) Header/trailer)

 Order/sequence

 Computation/Total

 Transaction Types

 Transaction Combinations

 Other

Invalid Input Selections

 Numeric Values - Sets and Ranges

 Invalid Blanks

 Invalid Signs

 Non-numeric

 Too large/Too small

 Invalid Middle for sets

 Invalid Characters

 Missing key fields

 Invalid key field

 Header record not initial record

 Trailer record not last record

 Invalid or missing header/trailer record

 Data Structures

 Missing required elements

 Extraneous unknown elements

 MDL Software Test Guidelines
02/06/04

DRAFT

Test Factor N/A Values
 Checked

A3-2

 Extraneous duplicate elements

 Invalid Sequence

 Inconsistent value

 Insufficient size

 Excessive size

 Invalid combinations

Termination

 Normal Termination

 Abnormal Termination

Outputs Normal

 Reports

 Files

 Transmissions

 Queries

Outputs Nil

 Reports

 Files

 Transmissions

 Queries

Algorithms and Computations

Database Transaction

 Event driven

 Time driven

 All Error Messages (not covered with negative test)

GUI Components

 MDL Software Test Guidelines
02/06/04

DRAFT

A4-1

APPENDIX 4
TEST PROCEDURE TEMPLATE

PROJECT NAME:

Module/Unit Name:

Test Procedure Title: Test Procedure ID:

Test Environment:

Location Machine
Name

OS Version AWIPS Ver-
sion

Application Version

NOAA/NWS HQ Silver Spring, MD

Test Result:

Test Date Tester Name Start and End
Time

Status
(Pass/Fail)

Comments

Test Procedure Update History:

Update Requested
by

Date Changed Comments

Requirements Addressed:

Prerequisite Conditions:

General Test Steps Needed for this Test Procedure:

Test Description:

ID Step Expected Result Pass/Fail

1

2

3

4

5

6

7

8

 MDL Software Test Guidelines
02/06/04

DRAFT

A5-1

APPENDIX 5
TEST LOG TEMPLATE

PROJECT NAME TEST LOG:

 Master List of Test Procedure / Testing Cycle Results
Total Number of Test Procedure : 8 Percent Tested: 50.00

Total Pass : 3 Percent Pass: 75.00
Total Fail : 1 Percent Fail: 25.00

Total Tested: 4

Test Procedure ID and Title Tester Name Test By Date Pass/Fail Comments
Module/Unit Name

Test Procedure 1 Tester 1 Pass
Test Procedure 2 Tester 2 Fail
Test Procedure 3 Tester 3 Pass
Test Procedure 4 Tester 4 Pass
Test Procedure 5

Module/Unit Name
Test Procedure 1 Tester 1
Test Procedure 2 Tester 1
Test Procedure 3 Tester 1
Test Procedure 4 Tester 1

